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There is an increasing need to be able to measure colour properties of complex surfaces or images for
which traditional spectrophotometers are not suitable. New multispectral imaging systems are being
developed but it is not clearly understood how the parameters (such as the number of colour channels,
the spectral properties of the channels, and the choice of illuminant) of such systems affect the
performance. Furthermore, the effect of sensor and quantisation noise on the overall performance of the
system also needs to be considered. This paper describes the development of a mathematical model of
a multispectral imaging system that takes into account imaging parameters and noise. The results from
the computational model show that increasing the number of colour channels alone in the imaging
system does not necessarily allow better estimates of spectral reflectance. The choice of illumination
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can also, in the presence of noise, greatly affect performance.

Introduction

The colour properties of uniform coloured surfaces can be
measured and analysed using the CIE system based upon
measurements made using reflectance spectrophotometers.
However, as colour measurement and control is being
extended from the traditional surface coatings industries
to encompass foodstuffs, pharmaceuticals and printed
images, there is an increasing need to be able to measure
colour properties of complex surfaces or images for which
traditional spectrophotometers are not suitable. For
example, to measure every distinct colour patch in an
image using a spectrophotometer would be at best
laborious and at worst impossible because of the small size
of the individual coloured regions. There is therefore a
growing interest in the development of camera systems that
can measure or recover CIE trichromatic coordinates at
each pixel location [1,2]. The characterisation of camera
systems to enable measurements of XYZ values at each
pixel location is a step forward but essentially sacrifices
colour resolution for spatial resolution. That is, such
systems allow XYZ values to be quickly captured for each
pixel in the image, but only provide a colorimetric
measurement and therefore cannot distinguish between
spectral metamers. A less compromised solution is to use
hyperspectral cameras that are able to measure the spectral
colour properties at each pixel location [3]. Such devices
are slowly becoming available but are extremely expensive.

Multispectral imaging is a term that is used to describe
camera systems that attempt to recover spectral properties
using a relatively small number of channels (as few as
three). Thus even a standard RGB camera system can be
used to estimate the reflectance properties of an image at
each pixel location [4]. For example, several researchers
have used linear models to recover spectral information
from low-cost imaging systems [5-7]. However, research
carried out using specific camera systems is often restricted
by the limits of the particular system (for example, the
number of colour channels) and may not be applicable in
a wider sense. Therefore, computational models of imaging
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systems have been used to efficiently explore the effect of
imaging parameters on the ability of the system to recover
spectral information [8-9].

In this paper we describe the development of a
mathematical model of a multispectral imaging system. We
describe experiments that address issues such as how the
accuracy of the system varies with the number and spectral
properties of the colour channels.

Experimental

Recovering spectral information from camera systems
The response of a camera system to a given point on an
illuminated surface is given by Eqn 1:

(1

where S;(1) is the spectral sensitivity of each channel i (i
= 1,...,P), E(1) and R(Z) refer to the spectral power of the
illumination and the surface reflectance functions of
wavelength A, respectively, and O; is the output of the
camera’s sensor array for each class of sensor i.

If the response of a system with three channels (P = 3)
is considered at discrete wavelengths, however, we can
write a description of the system as follows:

O = M1(M4)R(4,) + M(A2)R(Ay) +...+ My(4,)R(4,)
O, = My(A4)R(A1) + My(25)R(2,) +...+ My(Ap)R(A,)
O5 = M3(A1)R(A41) + M;3(A3)R(Az) +...+ M3(4,)R(4,)

(2)

where the illuminant and sensor spectral sensitivity terms
have been combined to give a single function of
wavelength for each channel M,. If the system is assumed
to be represented at each of 31 wavelengths (for example,
400-700 nm at 10 nm intervals) then the response of each
channel can be considered to be the sum of 31 terms. It is
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somewhat convenient to alternatively represent Eqn 2 as
a single linear system, as shown in Eqn 3:

0=Mr (3)

where o is a 3 x 1 column vector of the camera responses,
M is a 3 x 31 matrix (whose rows represent the spectral
response of the camera multiplied by the spectral
distribution of the illuminating source), and r is a 31 x 1
column vector of the reflectance spectrum. Eqn 3 is
interesting since it implies that the reflectance vector r can
be recovered (Eqn 4):

r=M"o (4)

where M is the inverse of the system matrix M.

Unfortunately, if only three sensor responses are avail-
able and we wish to recover spectral reflectance at 31
wavelengths, then Eqn 4 is underdetermined and the
estimate of r is likely to be very poor. Thus it would seem
that if we want to recover r at 31 wavelengths then we
would need a camera system with 31 channels. Such a
system would be a hyperspectral imaging system and
would be expensive to manufacture. The interesting
question is whether any reliable estimates of r can be
achieved with a low-cost RGB camera system.

One possible answer to this question is based upon the
fact that the vast majority of reflectance spectra for natural
and man-made surfaces are smooth functions of
wavelength [10]. The smoothness can be incorporated by
a linear model in which each reflectance spectrum R(4) is
represented as the weighted sum of a small number N of
basis functions B,(4) (Eqn 5):

R(A) = Y ax By (2) )

k

where q; are weighting coefficients and k = 1,...,N.

If these basis functions are chosen carefully, as few as
six such functions can be used to closely approximate most
man-made and natural reflectance spectra. The term for
reflectance in Eqn 1 can be replaced by the approximation
given in Eqn 5 to give Eqn 6:

0; = J‘E(M {2 ax By (/1]] S;(A)dA (6)

k

If we assume that E(4), S(4) and By(4) are all known, Eqn
6 can be recast as before as a matrix-algebra problem with
P equations and N unknowns. This gives Eqn 7:

o=La (7)

where a is a column vector of coefficients, o is now a P x 1
column vector of digital output values and L is a P x N
matrix obtained by the product of the illuminant, spectral
sensitivity curves of the camera and the basis functions. Eqn
7 can be solved to yield a by determining the inverse of L,
denoted by L™, and multiplying through to give:
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L'o=a (8)

Once a is known the elements of this vector give the
weighting coefficients a; directly and the estimated
reflectance is then calculated using Eqn 5.

The assumption that E(1), S(1) and By(4) are all known
is a reasonable one since E(1) and S(1) can be measured
or estimated for a controlled viewing environment and a
specific camera system and the basis functions By(4) can
be computed from a suitable set of reflectance spectra.

Methodology

This study employed a camera model that makes several
assumptions. Firstly, channel sensitivities S;(41) were always
assumed to be Gaussian functions of wavelength. Secondly,
the maximum sensitivities of the channels were placed at
equal intervals along the visible spectrum. Thirdly, each
sensor was normalised such that the integral under the
sensitivity curve had a value of 1. Fourthly, the number of
basis functions N used in the recovery process was always
equal to the number of sensor channels P so that the
solution matrix L (see Eqn 7) was always square. These
assumptions were made to constrain the camera properties
so that they could be investigated systematically. Thus, the
channel sensitivities were represented by the number of
channels and the broadness of their spectral envelopes. Of
course, these assumptions tended to simplify the model in
comparison with a real camera system but nevertheless
they are not unrealistic. The spectral sensitivities of many
commercial cameras, for example, are to a first-order
approximation Gaussian functions of wavelength [11]. The
most serious assumption was probably that of matching the
number of basis functions in the linear model of
reflectance with the number of channels. The effect of
relaxing this constraint will be discussed in a subsequent
publication.

The values of E(4) tested represented CIE illuminant A,
F11, D65 and an equal-energy illuminant with a value of
1 at all wavelengths. The imaging parameters investigated
were the number of sensors P and the sensor half width
o. The effect of changing these parameters was evaluated
in the presence of random noise, quantisation noise and
without noise. In the case of random noise, small random
values (normally distributed with mean zero and a variable
standard deviation, SD) were added to the sensor outputs.
In the case of quantisation noise the sensor outputs were
rounded to simulate their analogue-to-digital conversion
into discrete 8-, 10- and 12-bit representations. Thus the
camera outputs of our model were initially represented by
any value in the range 0-1. In order to model 12-bit digital
resolution, for example, these continuous values were
scaled to the range 0-4095 and then rounded to the nearest
integer.

A set of measured reflectance spectra (400-700 nm at
10 nm intervals) representing 1269 Munsell chips was
obtained [12] and used in this study. Thus, for various
values of P and o, the output of the camera model O; was
computed using Eqn 1 for each of 1269 samples using
various noise and illuminant conditions. The sensor
outputs for each sample were then used to recover
estimates of the reflectance functions of that sample using
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the recovery process outlined earlier. The performance of
the model was tested by comparing the reconstructed
spectra with the original spectra and representing the
differences as CIELab AE values (reconstruction errors)
under illuminant D65. The model was implemented using
the MATLAB programming environment.

A standard method for computing the basis functions
for a set of reflectance spectra employs singular value
decomposition and is provided as a single command SVDS
in MATLAB. The basis functions used (see Eqn 5) were
derived using this method and based upon the 1269
samples in the Munsell set.

Results and Discussion

Effect of sensor number

Figure 1 shows the median AE reconstruction error as a
function of sensor number (o = 110 nm) for various
illuminants for the no-noise condition. Median values are
more appropriate than mean values because the AE values
are almost certainly not normally distributed [13].

It is evident that, in general, performance improves (AE
decreases) with increasing number of sensors. Recall that
the number of basis functions used to represent the
reflectance functions increases with the number of sensors
(thus, P = N). However, performance did not always
improve with increasing the number of sensors. For
example, pronounced ‘peaks’ in median AE are clearly
evident when P = 6 for all illuminants.
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Figure 1 Number of sensors for four illuminants vs. median AE
reconstruction error (o = 110 nm)

Effect of quantisation noise

Figure 2 shows the effect of increasing quantisation noise
on the reconstruction error for different numbers of sensors
(data are shown for o = 110 nm and the equal-energy
illuminant condition). As expected, the effect of increasing
quantisation noise was to increase the error but the effect
was more marked for high values of P. The effect was also
more marked with greater values of o.

Effect of random sensor noise

Figure 3 shows the result of increasing the standard
deviation, SD, of the random noise and, unsurprisingly, the
reconstruction error increases with increasing SD. We also
investigated the relationship between the effects of random
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Figure 2 Number of sensors for four levels of quantisation noise
vs. median AE reconstruction error (o = 110 nm; equal-energy
illuminant)
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Figure 3 Number of sensors for four different levels of standard
deviation vs. median AE reconstruction error (o = 110 nm;
equal-energy illuminant)

noise and sensor half width and found that the effect of
noise on the reconstruction error was more marked for
larger values of o.

Effect of illuminant

In the no-noise condition there was no consistent difference
in results obtained using different illuminants. However,
Figure 4 compares the results for the different illuminants
in the presence of random noise. High errors can be
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Figure 4 Number of sensors for four illuminants in the presence
of random noise vs. median AFE reconstruction error (o =
110 nm; SD = 0.00625); for key see Figure 1
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observed for illuminants A and F11. Conversely, illuminants
D65 and the equal energy illuminant appear to make the
reconstruction process relatively robust to sensor noise.

Analysis of the reconstruction error results

The results of this study demonstrate several principles.
Firstly, it is not necessarily advantageous to increase the
number of sensors. Reasonable performance is obtained
with P = 5 (median AE < 1) but the error can increase
dramatically when P = 6 (median AE > 4 for some
illuminants) (Figure 1). This confirms findings made
independently by Hernandez-Andrés et al. who found that
when illumination spectra were estimated from small
numbers of channels the reconstruction error did not
consistently fall with increasing numbers of channels [9].
Secondly, although reconstruction errors are relatively
independent of the choice of illuminant in noise-free
conditions, in noisy conditions there is a clear advantage
for using illuminants which have an equal distribution of
energy across all wavelengths. It is also true that in the
presence of quantisation noise, increasing the number of
sensors beyond 5 is detrimental to performance (Figure 2).
In related experiments we have also found that the
reconstruction error decreases with the half-width of the
sensor under noisy conditions [14].

In fact, we have found that the circumstances under
which the reconstruction error is high closely correspond
with the linear system (Eqn 7) being ill-conditioned. This
property of the linear system can be quantified by the
condition number [15] of the matrix L (Eqn 7) which can
be computed as the product of the norms of the matrix and
its inverse thus [|L|| x |[L7'||. We find that when the
condition number of L is high the process is more sensitive
to noise. Furthermore, condition number generally
increases with increasing P and o, and is much higher for
illuminants with uneven energy distributions. Thus, the
rather surprising result that increasing the number of
colour channels in the system does not necessarily reduce
the reconstruction error may be explained in terms of the
condition number of the system matrix. In order to
minimise error in the reconstruction process it may be
necessary to choose sensors and illuminants such that they
minimise the condition number of L.

When the condition number is high this implies that
coefficients in the columns of the matrix L are becoming
increasingly correlated. Changing the wavelength spacing
of the peaks of the channels would almost certainly be a
major factor that determines the condition number. It is
important to note, therefore, that the argument proposed
is not that having six sensors in any camera system will
always result in relatively poor performance - since
relaxing the constraint of equally spaced sensors may well
have produced different results — but that increasing the
number of sensors alone does not guarantee better
performance. The interaction of all of the camera
properties (in our case, number of channels, width of
channel sensitivities, etc) needs to be considered.

Conclusions

It is important to note that our camera model included
several assumptions that may not all be met by a real

312 © Color. Technol., 117 (2001)

imaging system. Furthermore, there are a number of
potential parameters that we have not yet investigated such
as the wavelength spacing of the channel peaks and
different mathematical methods for estimating reflectance.
However, a number of design criteria seem to have emerged
from the present study. For example, best results are
generally achieved when illuminants with flat spectral
power distributions are used, the half-width of the channel
spectral properties is narrow, and the number of channels
is relatively few if the channel half-widths are large.

The next stage of the study is to verify the correctness
of the model by comparing the predictions made by the
model with data obtained from a real multispectral imaging
system that is being constructed at Derby University. The
purpose of such a comparison is to confirm that a linear
model (Eqn 1) for the camera system is valid and to provide
realistic estimates for noise parameters in this model. The
final stage of the project will be the development of an
optimisation procedure to allow the parameter space of the
system to be searched and the set of parameters that allows
the lowest reconstruction error to be determined. Such a
procedure would provide an efficient design tool for
effective multispectral imaging systems based upon low-
cost camera systems.

This study is supported by an EPSRC quota studentship
(99302500).
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