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In this paper we compare the accuracy of existmjreovel methods for determining the colorimetric
colour of blended yarn based on the percentagadalf fbre type used in the blend. We utilise
information from 106 yarns comprising blends oftag@ PAN fibre colours. Neural network,
experimental and theoretical models are considae@dply the Kubelka-Munk, Friele and Stearns-
Noechel methods. Results indicate that, whilstrethods have a range of accuracy, either an
enhanced theoretical approach or a neural netwetkad is best suited to modelling the problem.

1. Introduction

The colour of a yarn is determined by two setsaofdrs — the colour and shape of the constituent
fibres and the position and orientation of thobeei$ within that yarn. These constituent fibresaan

be of the same colour, but a single yarn can beposad of different types and colours of fibres.
Although these ‘melange’ or ‘blended’ yarns mayegrpmottled, they can be considered to possess a
single average colorimetric / spectrophotometriowovalue.

Although derived for randomly distributed isotropiedia, most theoretical models are based on the
Kubelka-Munk equatioh a subtractive-mixing model commonly used for g the colour of
single-colour dyed yarn. The single-constant fofrthe Kubelka-Munk equation was employed by
Davidsori. However, both Burlorfeand Amirshatiiused models developed on the two-constant
Kubelka-Munk equatioh °with varying degrees of success. The earliestetheoretical approaches
is the Friele mod&l’, which is based on the Lambert-Beer law, Kubelkaakitheory and an
empirically-derived scattering function proposedriged.

Prior to all of these were the purely empirical heets such as the 1944 Stearns-NoécMare

recently Thevenéthas applied a neural network approach to the prolif predicting the colour
change from un-spun blended roving to yarn. It geems logical to extend the neural network
method to our problem: Artificial neural networldSNNs) have proven to be useful in a great number
of recentézcolour problems such as the charactanisaf colour camerasand in colour prediction
problems”.

In this paper we compare the accuracy of existmjreovel methods for determining the colorimetric
colour of melange yarns, using existing data afatimation from 106 PAN blended yarns. For the
various blend percentages of three colours of Pl fred, green and blue) structural and
spectrophotometric data are obtained. These rem@ltsompared to existing models, notably: the
single constant Kubelka-Mufik; Frielé’; Stearns-Noechél'? and Phillips-Invernizzi’s revision of
the Stearns-Noech@l These are then compared and contrasted witmattee models, and finally a
neural-network model. The strengths of each argpaped and contrasted.

2. Theory
A melange yarn is created by mixinglifferent fibre colours with proportions . Based on this;

and knowledge regarding certain yarn propertieshsis the twist and count) and fibre properties
(such as the fibre diameter and its reflectivity) wish to obtain the wavelength dependent

reflectance factoR,, (/]) from which colorimetric values (e.g. CIE XYZ) che estimated.

2.1. The Mixture Function



Most blend-colour models separate the problem oktating the blend proportions to the
reflectanceR(A) into two equations: defining a mixture functid{A, R,¢/) and defining a
relationship between the mixture function agd The mixture functionf ()l, R,(//) depends on the
wavelengthl , the reflectancR, andz//[...] which represents any set of variables used taithesthe

physical and optical properties of the yarn anobfik;l/[...]. For previous research the mixture
function relationship has typically been a simplditive linear relationship® % * 2 * 1> petween the
blend mixture functionf,,,,, and the mixture function for aft identically produced single-colour

yarns f;:
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To predict a blend reflectance we then simply: iobtize constituentf, mixture functions from
measurements of the reflectance forntsingle colour yarns, calculate tHg,, using equation (1)
and then rewrite the mixture function to obtairegpiation that expressés in terms of f,,, .

2.2. Single Constant Kubelka-M unk model
For a large scattering coefficieS()l) or a media that is thick enough to become optiagtigque,
then the basic form of the Kubelka-Munk equatican be employed using equation (1).
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2.3. Stear ns-Noechel model
The Stearns-Noechel model again uses equatioruflhis time with the additive function as,

()= LR (3)
b(R(1)- 001)+ 001
b is a dimensionless constant, established for pagifc blend via experimental measurement.
Phillips-Invernizzt® proposed an enhanced version that incorporateavalength dependehtterm,
b=-1:(0124 +4275) (4)

2.4. Friele model
Whilst equation (1) is still utilised, the addititerm is derived from Beer’s law, utilising equati(2)
in the process. Thus we obtain,

f FR (/]) — e—a(l—R(/i))z/(ZR(/l ) (5)
Wheregis known as the Friele parameter and varies féeréint fibre types.

2.5. Neural Network model

Artificial neural networks crudely mimic the behaur of neurons in the human brain: a set of
neurons can be tailored to receive a set of inpdisdeliver a set of outputs, and then by showing i
examples of typical input and output informationan be trained to predict outputs based on any
desiredrﬂipput set. It has been shown that ANNsbeatnained to accurately fit almost any continuous
function™.

A feed-forward backpropagation network can be dexigand trained to predict the blend reflectance
R, based on only the blend proportiorsand the wavelengtid . Using a 3-layer model (input,
output and one hidden layer of neurons) we cazstenmeseparate networks each withraalement
input vector (the proportions of allfibre types) predicting a single element outpugiid reflectance)

for a discrete set gh wavelengths. This is in many ways equivalent single partially connected
ANN. The advantage of this method is two-fold: reéuretworks respond better when their inputs are



of a similar “type”, and even with normalisatioretfunctional dependence of the output on the
wavelength will be considerably different to th@dtional dependence on fibre blends proportions;
the advantage of traditional methods is their mtadé power, and as such the best ANN solution for
this problem will be one which can train accuratatyvery little data.

3. Method

For the purpose of this investigation 106 worstetfamge yarn samples were produced by
ACORDIS. These consist of various proportions oéch(Geranium), a green (Evergreen), and a blue
(Cobalt) fibre selected from the Acordis' rangé&dT ex Polyacrylic Nylon (PAN) (approx. 2Bn
diameter) fibres. The yarns were 55.55 Tex, thanbumixed by running 7 or 8 times through a Gill
box (6 or 8 draft), and spun into a non-compactaeélaxed single ply yarn with a single twist of
approx. 240 turns per metre in the Z direction.

To obtain colorimetric data the yarn were woundwbatandard cardboard cones sufficiently so as to
behave as optically opaque media and the refleetgpectra measured using a Konica Minolta CM-
3600d spectrophotometer with a 10-mm diameter apertReflectance data (with specular
component included) were taken at 10-nm intervate/éen 360 nm and 740 nm (nate39). In

order to minimise experimental error, ten differeftectance spectra were taken for each yarn
retaining the same angle to the aperture and aatme height from the cone base. The average of th
ten measurements was calculated and used to del€@IBLAB coordinates (for the illuminant

and the 1964 standard observer).

The numerical work was developed in MATLAB, makimge of its Neural Network toolbox. A
simplex algorithm was used for function fittingjnga mean least squares criterion to the spectral
reflectance. The 39 ANNs were feed-forward backagapion networks employing a Log sigmoid
transfer function with a three-element input vectosingle element output vector, and a 5 element
hidden layer.

All of the models tested were trained/fitted witlirious sizes of subset of the reflectance datthéor
106 yarn available, ranging from three yarns td.@8 yarn. The quality of the fits achieved werenth
based on 2 situations 1) the accuracy of the pieditor all 91 major yarn 2) the accuracy of the
prediction for the 15 small variation yarns.

4. Resultsand Analysis

Using the meari‘AE| of the fit as a measure of how close the colouchme we find that the neural
network model is the clear winner out of the 4 nisdensidered as it is the only model that achieves
an averageiaAE| less than 1. However, figure (1) clearly indicétes this can only occur when the

training data is in excess of approximately 5thgawhich may not be feasible in a manufacturing
situation. For lower training set sizes the basd enhanced Stearns Noechel models appear to be the

best, even if they still average greater ttthE| =1. It is interesting to note that with increasing

training set size there is little variation in fedictive power of the theoretical and empiricaldals,
possibly indicating that it is the fine functiorddpendence that they do not adapt to well.

Figures (2a) and (2b) supports the conjecturetti@atheoretical and empirical models do not adapt
significantly to an increased training set. Onlg teural Network model changes significantly, with

a smaller percentage of the colour predictionmlabove|AE| =1.

As for the 15 fine variation yarns, when trainedtlo® main sets there were significant errors, but
when trained specifically to the small detail s#tsnodels behaved with remarkable accuracy. ®his i
however unsurprising as the data over such smadlesis smooth and this was moreover a test of
whether the models could fit a smooth curve.
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Figure 1: Changesin mean |AE| of fit with increasing training set size for all models
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Figures 2a and 2b: Histogram of |AE| for training sets of 10 yarns and 28 yarns

5. Conclusion
Whilst a Neural Network model is the only methodtmsistently achieve predictions lower than

|AE| =1, for a small training (20 yarns or less) seippears that either the basic Stearns-Noechel or

the Phillips-Invernizzi enhanced Stearns-Noechalehs the closest predictor. | would like to thank
EPSRC for funding this research, Acordis Acrylibréss for providing the yarn used, and K.
Beverley, V. Cheung and F. Siewe for their assestan this endeavour.
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