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In this paper we compare the accuracy of existing and novel methods for determining the colorimetric 
colour of blended yarn based on the percentage of each fibre type used in the blend. We utilise 
information from 106 yarns comprising blends of up to 3 PAN fibre colours. Neural network, 
experimental and theoretical models are considered, notably the Kubelka-Munk, Friele and Stearns-
Noechel methods. Results indicate that, whilst all methods have a range of accuracy, either an 
enhanced theoretical approach or a neural network method is best suited to modelling the problem. 
 
1. Introduction 
The colour of a yarn is determined by two sets of factors – the colour and shape of the constituent 
fibres and the position and orientation of those fibres within that yarn. These constituent fibres can all 
be of the same colour, but a single yarn can be composed of different types and colours of fibres. 
Although these ‘melange’ or ‘blended’ yarns may appear mottled, they can be considered to possess a 
single average colorimetric / spectrophotometric colour value. 
 
Although derived for randomly distributed isotropic media, most theoretical models are based on the 
Kubelka-Munk equation1: a subtractive-mixing model commonly used for predicting the colour of 
single-colour dyed yarn. The single-constant form of the Kubelka-Munk equation was employed by 
Davidson2. However, both Burlone3 and Amirshahi4 used models developed on the two-constant 
Kubelka-Munk equation 1, 5 with varying degrees of success. The earliest of the theoretical approaches 
is the Friele model6, 7, which is based on the Lambert-Beer law, Kubelka-Munk theory1 and an 
empirically-derived scattering function proposed by Pineo8. 
 
Prior to all of these were the purely empirical methods such as the 1944 Stearns-Noechel9. More 
recently Thevenet10 has applied a neural network approach to the problem of predicting the colour 
change from un-spun blended roving to yarn. It thus seems logical to extend the neural network 
method to our problem: Artificial neural networks (ANNs) have proven to be useful in a great number 
of recent colour problems such as the characterisation of colour cameras11 and in colour prediction 
problems12. 
 
In this paper we compare the accuracy of existing and novel methods for determining the colorimetric 
colour of melange yarns, using existing data and information from 106 PAN blended yarns. For the 
various blend percentages of three colours of PAN fibre (red, green and blue) structural and 
spectrophotometric data are obtained. These results are compared to existing models, notably: the 
single constant Kubelka-Munk2, 4; Friele6,7; Stearns-Noechel 9, 13; and Phillips-Invernizzi’s revision of 
the Stearns-Noechel13. These are then compared and contrasted with alternative models, and finally a 
neural-network model. The strengths of each are compared and contrasted. 
 
2. Theory 
A melange yarn is created by mixing n different fibre colours with proportions ix . Based on this ix  

and knowledge regarding certain yarn properties (such as the twist and count) and fibre properties 
(such as the fibre diameter and its reflectivity) we wish to obtain the wavelength dependent 
reflectance factor ( )λblendR  from which colorimetric values (e.g. CIE XYZ) can be estimated.  

 
2.1. The Mixture Function 



Most blend-colour models separate the problem of correlating the blend proportions ix to the 

reflectance ( )λR  into two equations: defining a mixture function ( )ψλ ,,Rf  and defining a 

relationship between the mixture function and ix . The mixture function ( )ψλ ,,Rf  depends on the 

wavelengthλ , the reflectanceR , and [ ]...ψ  which represents any set of variables used to describe the 

physical and optical properties of the yarn and fibre. [ ]...ψ . For previous research the mixture 
function relationship has typically been a simple, additive linear relationship 9, 6, 2, 3, 2, 4, 13, 7 between the 
blend mixture function blendf  and the mixture function for all n  identically produced single-colour 

yarns if : 
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To predict a blend reflectance we then simply: obtain the constituent if  mixture functions from 

measurements of the reflectance for the n single colour yarns, calculate the blendf  using equation (1) 

and then rewrite the mixture function to obtain an equation that expresses R  in terms of blendf . 

 
2.2. Single Constant Kubelka-Munk model 
For a large scattering coefficient ( )λS or a media that is thick enough to become optically opaque, 
then the basic form of the Kubelka-Munk equation5 can be employed using equation (1). 
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2.3. Stearns-Noechel model 
The Stearns-Noechel model again uses equation (1) but this time with the additive function as, 
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b is a dimensionless constant, established for any specific blend via experimental measurement. 
Phillips-Invernizzi13 proposed an enhanced version that incorporated a wavelength dependent b term, 
  ( )75.4212.01000

1 += λb     (4) 

 
2.4. Friele model 
Whilst equation (1) is still utilised, the additive term is derived from Beer’s law, utilising equation (2) 
in the process. Thus we obtain, 

  ( ) ( )( ) ( )( )λλσλ RRFR ef 2/1 2−−=     (5) 

Where σ is known as the Friele parameter and varies for different fibre types. 
 
2.5. Neural Network model 
Artificial neural networks crudely mimic the behaviour of neurons in the human brain: a set of 
neurons can be tailored to receive a set of inputs and deliver a set of outputs, and then by showing it 
examples of typical input and output information it can be trained to predict outputs based on any 
desired input set. It has been shown that ANNs can be trained to accurately fit almost any continuous 
function14. 
 
A feed-forward backpropagation network can be designed and trained to predict the blend reflectance 

blendR  based on only the blend proportions ix  and the wavelength λ . Using a 3-layer model (input, 

output and one hidden layer of neurons)  we can create m separate networks each with an n element 
input vector (the proportions of all n fibre types) predicting a single element output (blend reflectance) 
for a discrete set of m wavelengths. This is in many ways equivalent to a single partially connected 
ANN. The advantage of this method is two-fold: neural networks respond better when their inputs are 



of a similar “type”, and even with normalisation the functional dependence of the output on the 
wavelength will be considerably different to the functional dependence on fibre blends proportions; 
the advantage of traditional methods is their predictive power, and as such the best ANN solution for 
this problem will be one which can train accurately on very little data. 
 
3. Method 
For the purpose of this investigation 106 worsted melange yarn samples were produced by 
ACORDIS. These consist of various proportions of a red (Geranium), a green (Evergreen), and a blue 
(Cobalt) fibre selected from the Acordis' range of 5dTex Polyacrylic Nylon (PAN) (approx. 25 µm 
diameter) fibres. The yarns were 55.55 Tex, thoroughly mixed by running 7 or 8 times through a Gill 
box (6 or 8 draft), and spun into a non-compacted unrelaxed single ply yarn with a single twist of 
approx. 240 turns per metre in the Z direction. 
 
To obtain colorimetric data the yarn were wound round standard cardboard cones sufficiently so as to 
behave as optically opaque media and the reflectance spectra measured using a Konica Minolta CM-
3600d spectrophotometer with a 10-mm diameter aperture.  Reflectance data (with specular 
component included) were taken at 10-nm intervals between 360 nm and 740 nm (note m=39).  In 
order to minimise experimental error, ten different reflectance spectra were taken for each yarn 
retaining the same angle to the aperture and at the same height from the cone base.  The average of the 
ten measurements was calculated and used to calculate CIELAB coordinates (for the D65 illuminant 
and the 1964 standard observer). 
 
The numerical work was developed in MATLAB, making use of its Neural Network toolbox. A 
simplex algorithm was used for function fitting, using a mean least squares criterion to the spectral 
reflectance. The 39 ANNs were feed-forward backpropagation networks employing a Log sigmoid 
transfer function with a three-element input vector, a single element output vector, and a 5 element 
hidden layer. 
 
All of the models tested were trained/fitted with various sizes of subset of the reflectance data for the 
106 yarn available, ranging from three yarns to all 106 yarn. The quality of the fits achieved were then 
based on 2 situations 1) the accuracy of the prediction for all 91 major yarn 2) the accuracy of the 
prediction for the 15 small variation yarns. 
 
4. Results and Analysis 
Using the mean E∆  of the fit as a measure of how close the colour match is we find that the neural 

network model is the clear winner out of the 4 models considered as it is the only model that achieves 

an average E∆  less than 1. However, figure (1) clearly indicates that this can only occur when the 

training data is in excess of  approximately 50 yarns, which may not be feasible in a manufacturing 
situation. For lower training set sizes the basic and enhanced Stearns Noechel models appear to be the 

best, even if they still average greater than E∆ =1. It is interesting to note that with increasing 

training set size there is little variation in the predictive power of the theoretical and empirical models, 
possibly indicating that it is the fine functional dependence that they do not adapt to well. 
 
Figures (2a) and (2b) supports the conjecture that the theoretical and empirical models do not adapt 
significantly to an increased training set. Only the Neural Network model changes significantly, with 

a smaller percentage of the colour predictions falling above E∆ =1. 

 
As for the 15 fine variation yarns, when trained on the main sets there were significant errors, but 
when trained specifically to the small detail sets all models behaved with remarkable accuracy. This is 
however unsurprising as the data over such small ranges is smooth and this was moreover a test of 
whether the models could fit a smooth curve. 



 
Figure 1: Changes in mean E∆ of fit with increasing training set size for all models 

 
Figures 2a and 2b: Histogram of E∆  for training sets of 10 yarns and 28 yarns 

 
5. Conclusion 
Whilst a Neural Network model is the only method to consistently achieve predictions lower than 

E∆ =1, for a small training (20 yarns or less) set it appears that either the basic Stearns-Noechel or 

the Phillips-Invernizzi enhanced Stearns-Noechel model is the closest predictor. I would like to thank 
EPSRC for funding this research, Acordis Acrylic Fibres for providing the yarn used, and K. 
Beverley, V. Cheung and F. Siewe for their assistance in this endeavour. 
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