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ABSTRACT 

 
We investigated the blur tolerance of human 

observers for stimuli modulated along the isoluminant 
red-green, the isoluminant yellow-blue, and the 
achromatic direction in colour space. The smallest blur 
difference thresholds are found for slightly blurred 
images and are about 0.5 arc min for red-green and 
luminance stimuli and 1.5 arc min for yellow-blue 
stimuli. The estimated internal blur for luminance-
modulated and red-green stimuli is about 1 arc min, 
for yellow-blue it is about 2 arc min. The contrast 
dependence of blur tolerance is identical for red-green 
and luminance. Our blur tolerance estimates may be 
useful when gaussian lowpass filtering is used for noise 
removal in colour images. 

Keywords: blur; colour; luminance; sharpness; 
lowpass filtering. 

 
 

1 INTRODUCTION 
 

The responsiveness of the human visual system to an 
image depends on a multitude of image features, such 
as the wavelength (colour) of the visual stimulus and 
its spatial content. Three main factors limit the spatio-
chromatic sensitivity of the visual system: the optics of 
the eye, retinal sampling, and post-receptoral neuronal 
factors. In this paper we investigate a specific aspect of 
the spatio-chromatic sensitivity of the human visual 
system. We examine how much blur the visual system 
can tolerate in different colour directions and its 
dependence on contrast. We will attempt to account for 
the observed blur tolerance by the known contrast 
sensitivity function for luminance red-green, and 
yellow-blue gratings. Our results could be useful as a 
guideline for image processing applications, such as 
removal of  noise in chromatic and monochromatic 
images.  

 
 

2  METHODS 
 

The purpose was to assess the blur tolerance of the 
visual system for different colour directions and to 
arrive at an estimate of the internal blur and the 
contrast dependence of blur thresholds. 

Six subjects with normal colour vision (confirmed with 
Ishihara plates) and normal or corrected-to-normal 
spatial vision participated in the experiment. 

 

2.1. Stimuli 
The test patterns were vertical square wave patterns 
with a fundamental frequency of 1 cycle per degrees, 
vignetted by a two-dimensional Gaussian envelope, 
subtending 6 degrees of visual angle (256 x 256 
pixels), superimposed on the uniform grey background 
for 1 second. The stimuli were modulated along a 
luminance (black-white) direction, an isoluminant red-
green or an isoluminant yellow-blue direction. 
Isoluminance was defined by photometric luminance 

and based on the photometric standard observer 1. The 
maximum cone contrast used for the black-white and 
red-green modulations was 10% and for yellow-blue 
80%. For red-green and luminance modulatoins, cone 
contrast is defined as the average incremental LM cone 
excitation divided by the cone excitation of the 
background. The L cone contrast is referred to as  
cL=∆L/LBG; the M cone contrast is defined similarly as 
cM=∆M/MBG where ∆L and ∆M are the incremental 
cone excitations in the L and M cones respectively. LBG  
and MBG  denote the cone excitations of the grey 
background. Luminance  stimuli are modulations 
between dark and light grey such that the L and M 
cone contrast are of equal sign, whereas the red-green 
chromatic stimuli are modulations between red and 
green such that the L and M cone contrast are of 
opposite sign and a 2:1 ratio of L: M cone contrast. We 
chose this cone contrast metric for several reasons. 
First, it makes no assumptions about post-receptoral 
mechanisms. Secondly, for luminance-defined stimuli, 
our cone contrast measure is identical to Michelson 
contrast. Finally, for the luminance and isoluminant 
stimuli used in our experiment, a vector length metric 
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and a cone contrast metric (RMS) would make almost 
identical predictions. RMS is also often used as a 
metric for coloured lights. The yellow-blue colour 
direction is identical to the tritanopic confusion line; 
modulations along the yellow-blue direction only 
stimulate the S cones and do not affect the L or M 
cones. Cone contrast for yellow-blue is defined as 
∆S/SBG. 

 

2.2.  Apparatus 
 Stimuli were presented on a Mitsubishi Colour 
Monitor (19 inch) that was driven by a Cambridge 
Research VSG 2/3 graphics board with a refresh rate of 
100 Hz non-interlaced. The output of the two 8-bit-
digital-to-analog converters were combined to produce 
an intensity resolution of 12-bits. A spectroradiometer  
(Photo Research PR650) was used to measure the 
spectral power distribution of the three phosphors. The 
spectra were multiplied by Judd’s 1951 colour 
matching functions to derive the chromaticities and the 

luminance values of the three phosphors2,3. The 
derived luminance values were used to construct a 
look-up table that linearised the relationship between 
the pixel values and the light output of the monitor. 
The CIE co-ordinates (x,y, maximum luminance in cd 
x m-2) of the phosphors were  as follows: (0.623, 0.352, 
22)  for the red gun, (0.285,0.585,52) for the green gun, 
and (0.145, 0.067, 6) for the blue gun. The background 
was kept constant at a  grey with CIE co-ordinates of 
(0.34, 0.36, 40). The viewing distance in all 
experiments was 114 cm. 

 

2.3.Procedure 
We used a 2-interval-forced-choice (2-IFC) procedure 
to measure blur thresholds. One interval contained the 
standard square wave (with a fixed reference blur), the 
other interval contained the square wave grating with a 
variable amount of blur. The amount of reference blur 
applied to the standard ranged between 0 and 3.5 arc 
minutes, with 0 representing a sharp square wave and 
3.5 representing a highly blurred square wave grating. 
The task of the observer was to indicate which of the 
two intervals contained the sharper stimulus. 

The lowpass filtering (blurring) of the square wave 
grating was achieved by on-line spatial convolution 
with a Gaussian mask. The amount of blur was 
controlled by varying the standard deviation of the 
Gaussian kernel; a large standard deviation resulted in 
a large amount of blurring. 

Psychometric functions were obtained for each 
reference blur in each session, a Weibull curve was 
fitted to the psychometric function and blur threshold 
was defined as the 81% on the psychometric function. 
Chance performance was 50%. 

3. RESULTS 
 
3.1. The ‘dipper’ function for blur 

discrimination 
Fig. 1 shows the blur thresholds as a function of the 
external reference blur for all three colour directions.  

 

FIG. 1a. Blur thresholds for black-white stimuli. 

 

FIG. 1b. Blur thresholds for red-green 
stimuli

 

FIG. 1c. Blur thresholds for yellow-blue stimuli. 

 

We obtain a u-shaped function for all three colour 
directions and for all observers. This counter-intuitive 
finding that human observers are most sensitive to 
incremental blur when added not to very sharp images 
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but to slightly blurred images, has been reported before 

for luminance edges4,5. We have replicated this 
finding for luminance edges and found the same u-
shaped function for red-green and yellow-blue 
gratings.  Black-white (Fig. 1a) and red-green stimuli 
(Fig. 1b) were presented at 10% cone contrast, yellow-
blue stimuli (Fig. 1c) were presented at the maximum 
available contrast, namely 80% cone contrast. On the 
x-axis the reference blur of the standard stimulus is 
plotted, on the y-axis the blur difference thresholds are 
plotted. Blur discrimination thresholds for black-white 
(Fig. 1a)  and red-green (Fig. 1b) are very similar and 
show a minimum at a reference blur between 0.5 and 1 
arc min. The blur thresholds for sharp square waves (0 
reference blur) are about 1 arc min for red-green and 
for black-white. Blur thresholds for yellow-blue 
gratings are much higher (1.8 arc min; Fig. 1c). The 
minimum blur thresholds for yellow-blue also occur at 
a reference blur between 0.5 and 1 arc min.  

 

FIG. 2. Blur thresholds are re-plotted as Weber 
Fractions. 

 

In Fig. 2 the data are replotted as Weber fractions, that 
is, as the ratio of the blur difference thresholds and the 
external reference blur. The Weber ratio for black-
white (open triangles) is constant at 0.28 for external 
blurs larger than 1 arc min; the Weber ratio for red-
green is only slightly higher and it levels at 0.35 for 
external blurs larger than 1 arc min. Hence, for red-
green and black–white blur discriminations, Weber's 
law holds when the stimulus is slightly blurred (>1 arc 
min). These results differ from previous findings on 
luminance targets where the blur difference thresholds 
did not follow Weber's law and an exponent of 1.5 

rather than 1 had be postulated for the external blur4. 
However, subsequent experiments on luminance edges 
confirmed the validity of Webers law for external blurs 

larger than 3 arc min5.  For yellow-blue gratings 
(closed squares)  the Weber ratio converges to a 
constant value at much larger external blur values, i.e 
above 3.5 arc min. The Weber ratio is about 0.5 for a 
reference blur of 3.5 arc min.  

3.2.Contrast dependence 
To assess the contrast dependence of blur 
discrimination sensitivity we measured blur thresholds 
at several contrast levels (3%,5% and 10% cone 
contrast for red-green and black-white; 25% and 80% 
cone contrast for yellow-blue). Figs. 3a-c show the 
thresholds for a reference blur of 0 arc min for all three 
colour directions for all observers. In Fig. 3d (lower 
right corner), the contrast dependence is compared for 
the three colour directions. Regression lines have been 
fitted and the resulting slopes (in log co-ordinates) are 
as follows:  -0.147  for black-white, -0.161  for red-
green, and –0.758 for yellow-blue. We compared the 

regression lines for the different colour directions6 and 
found the following: neither the slopes (P=0.35) nor 
the intercepts (P=0.56) are statistically different for the 
black-white and the red-green directions. The slope for 
yellow-blue is also not different from the slope for red-
green and black-white (P=0.34).  Hence we conclude 
that the contrast dependence for all three colour 
directions is the same. The intercept for yellow-blue 
differs from the intercept for red-green and black-white 
(P=0.013). When testing for the overall coincidence of 
the red-green and the black-white regression lines,  we 
find that they do not differ significantly from each 
other (P=0.342). Overall, the yellow-blue regression 
line differs significantly from the red-green and the 
black-white regression lines (P<0.001) reflecting the 
fact that the thresholds for yellow-blue are twice as 
high as the thresholds for red-green and black-white 
stimuli. 

 

FIG. 3. Blur thresholds as a function cone contrast. 

 

 

4. DISCUSSION 
 

We show that blur discrimination sensitivity is optimal 
for slightly blurred images rather than for sharp 
images. Our findings are in agreement with previously 
reported blur discrimination thresholds for luminance 
edges and extend the results to chromatic  gratings.  
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4.1.Comparison of blur tolerance for 
luminance and red/green stimuli 

Our psychophysical experiments show that the blur 
tolerance for luminance and isoluminant red-green 
stimuli is very similar when the stimuli are stationary 
and of identical LM-cone contrast. For both colour 
directions, Weber’s law holds for external blurs larger 
than 1 arc min and the absolute blur difference 
thresholds are almost identical. These findings are 
consistent with the hypothesis that, in our visual tasks, 
luminance and chromatic stimuli are mediated by the 
same mechanism. Furthermore, the contrast 
dependence is similar for both luminance and 
isoluminant red-green targets, which also supports this 
hypothesis. The most likely pathway is the 
parvocellular pathway, which responds to luminance 
and isoluminant chromatic modulations, is sensitive to 
high spatial frequencies but rather insensitive to high 
temporal frequencies. 

4.2.  Blur tolerance for yellow-blue stimuli 

Blur thresholds for yellow-blue are about twice as high 
than for the red-green and black-white gratings when 
yellow-blue gratings are presented at the maximum 
contrast (80% cone contrast) and red-green and black-
white gratings are presented at 10% cone contrast. 
Webers law does not hold for yellow-blue stimuli for 
the range of external blurs we have measured ( up to 
3.5 arc min). This suggests that little masking or 
normalisation takes place in the yellow-blue pathway. . 

Blur difference thresholds are lower than expected 
from the retinal sampling of the blue cones. Only 
approximately 5% of the cones are sensitive to short-
wavelength light and the yellow-blue modulations 
employed in this experiment are chromatic 
modulations that only stimulate the blue cones. Hence, 
if the performance in this task was only limited by the 
retinal sampling mosaic we expect the blur thresholds 
for yellow-blue to be higher than by a factor of 2.  

 

4.3. Computations underlying blur 
discrimination 
We will now consider  two possibilities to account for 
the blur discrimination thresholds. The first possibility 
is the model proposed by Watt & Morgan which is 
based upon the idea that blur discrimination 
performance is based on the output of the most 
sensitive spatial filter. 

4.3.1. Watt & Morgan’s Blur Model   

The purpose of our experiment was to assess how 
much blur the visual system tolerates in different 
colour directions. To obtain a quantitative estimate of 
the internal blur in the visual system associated with 

the different colour directions, we used a simplified 

version of the model proposed by Watt & Morgan7 
which has been used successfully to predict blur 
discrimination data for luminance edges. The two main 
assumptions are:  

A1. The internal blur of the visual system maybe 
modelled as a Gaussian spatial filter. Hence the 
internal blur representation is given by the convolution 
of the real edge of blur B with the filter of space 
constant s (internal blur). If the blur is Gaussian, then 
the internal blur representation (B') is given by: 

2’ BsB += . 

A2.  The main source of error in a 2-IFC blur 
discrimination task is the comparison of the internal 
blur representation in the two intervals. We assume a 
Weber law for the internal blur comparison: 

kBB =∆ ’/’ . 

Based on  these two assumptions blur difference 
thresholds (∆B) can be expressed as a function of the 
Weber constant, the internal blur constant, and the 

external reference blur7. We estimated the two 
parameters, that is, the standard deviation of the 
internal blurring function (s) and the Weber constant 
(k), using a weighted least-squares fit:  
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∆B(Bi;s,k) is the predicted blur threshold as a function 
of B,s,k; s is the internal blur, k is the Weber constant, 
Bi is the external reference blur, ∆Bi is the observed 
blur difference threshold, σi is the standard deviation of 
the relevant data point and N is the number of data 
points. 

 

FIG. 4. Model fit and estimated internal blur. 

The solid and dashed lines in Fig. 4 show the predicted 
blur difference thresholds as a function of the external 
reference blur for the three colour directions. The fits 
were performed over the accumulated data of all 
observers. (i) For black-white and red-green 
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modulations the internal blur estimates are very similar  
and around 1 arc min (Fig. 4) when the stimuli are 
equated in terms of cone contrast (10% cone contrast). 
The estimated Weber-Fraction (for the internal blur 
representation) is slightly higher for red-green (Weber 
constant = 0.3) than for black-white (Weber constant = 
0.2) (ii) Yellow-blue stimuli produce internal blur 
estimates that are twice as high (2.1 arc min) as 
luminance and red-green blur estimates (Fig. 4). The 
estimated Weber fraction for yellow-blue is 0.36 and is 
higher than for red-green and for luminance stimuli. 
For all three colour directions, the thresholds predicted 
from the model do not differ significantly from the 
observed data; in all three cases the probability that the 
deviations from the model fit are due to chance is 
larger than 0.1.  

Our estimate of 1 arc min for the internal blur in the 
luminance pathways is in agreement with a previous 

study on motion blur8. Watt and his collaborators4 
have reported internal blur filters of larger sizes (2.8 
arc min) than we find in our experiment. However, the 
external blur at which blur discriminability is optimal 
is very similar  to ours, namely at around 1 arc min. 
Assuming that Watt & Morgan’s model is correct, the 
filters used in our blur discrimination task are centered 
at higher spatial frequencies  than the spatial filter 
derived from their experiments. The estimated filters 
for luminance and red-green in our blur discrimination 
derived from our experiment are centered at around 10 
cpd, the centre frequency of the yellow-blue filter is at 
around 5 cpd. These estimates are higher than the ones 
derived by Watt and his colleagues: the best-fitting 
filter for luminance edges was centered at around 5 

cpd4,5,7. 

 

4.3.2. Contrast sensitivity and blur tolerance 

Blur tolerance thresholds were assessed by convolving 
the square wave grating with a Gaussian kernel. 
Blurring the image with a Gaussian mask attenuates the 
higher frequencies. We tested the simple hypothesis 
that blur discriminability can be accounted for by the 
contrast sensitivity of the human visual system. We 
made the simplifying assumption that the human visual 
system can be modeled by a single channel whose 
modulation transfer function is described by the  
contrast sensitivity curve. The predictions of the single 
channel model are shown in Fig. 5 and the following 
steps are involved in the simulations. All calculations 
were performed with MatLab Version 5. 

(1) The original square waves are blurred with the 
reference blurs as in the actual experiment 
(reference blurs used in the simulations: 0, 0.5, 1, 
2, and 3.5 arc min). This is done by convolving the 
waveforms with Gaussian kernels of the 
appropriate standard deviations. Then the Fourier 
transform of the blurred waveforms was performed 

and the amplitude spectra are computed (Reference 
Spectra) 

(2)  The blurred waveforms that are just noticeably 
different from the reference waveforms are 
simulated. Again, this is done by convolving the 
original square waves with Gaussian kernels. The 
blur applied to these comparison stimuli is the sum 
of the reference blur and the (measured) blur 
difference threshold (see Fig. 1). By definition, the 
comparison stimulus is one JND apart from the 
reference blur. E.g. for luminance stimuli (see Fig. 
1a), for a reference blur of 0, the difference blur (at 
threshold) is 1 arc min and the resulting 
comparison blur is 1 arc min; for a reference blur 
of 0.5 arc min the difference blur (at threshold) is 
0.5 arc min and the resulting comparison blur is 
also 1 arc min. The Fourier Transform of the 
comparison stimuli is then computed and we refer 
to the amplitude spectra as comparison spectra. 

(3) The next step is to multiply the reference and the 
comparison spectra with the contrast sensitivity 
functions for luminance, red-green, and yellow-
blue modulations. The contrast sensitivity data 

were taken from Mullen9. We expressed the 
contrast sensitivity for red-green and luminance in 
cone contrast units; the units for yellow-blue 
contrast sensitivity are arbitrary. It is worthwhile 
noting that, for a 0.3 cpd grating, the cone contrast 
required for detection is 0.00245 for red-green and 
0.0124 for luminance modulations; hence the red-
green grating detectability is 20 times higher than 
the luminance one for this low frequency. For a 3 
cpd grating the threshold is 0.015 for red-green 
and 0.00635 for luminance modulations; hence, for 
3 cpd, the detectability of a red-green grating is 2.5 
times lower than  the detectability of a luminance 
grating. For frequencies above 3cpd the relative 
sensitivity (luminance vs. red-green) is fairly 
constant and about 2.5 times lower for red-green 
compared to luminance modulations. Based on 
Mullen’s data the contrast sensitivity curves for 
luminance and red-green cross over between 1 and 
2 cpd when sensitivity is expressed as the inverse 
cone contrast. 

(4) We then take the inverse Fourier transform of the 
respective reference and comparison spectra, and 
compute the root-mean-square (RMS) contrast of 
the difference between the filtered images 
(reference and comparison stimuli) . The RMS 
contrast is a measure of the visible difference 
between the two stimuli. 

(5) The final step is to normalise the RMS contrast of 
the difference image with the RMS contrast of the 
filtered reference image.  

Fig. 5 shows the predictions derived from steps 1 to 5. 
If the blur tolerance is based upon detecting the overall 
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contrast difference (via a single channel described by 
the contrast sensitivity function) then the RMS contrast 
should be constant when plotted as a function of the 
reference blur. We report  three main findings: (1) For 
luminance and red-green waveforms (open triangles 
and open circles), the contrast of the difference image 
is constant for reference blurs ranging from 0 to 1 arc 
min. For higher reference blurs, the contrast available 
in the difference image is too large to account for the 
measured blur tolerance. In other words, the visual 
system does not utilise the available information when 
performing the blur discrimination task. However, for 
small external blurs (up to 1 arc min) the dipper 
function for blur discriminability is predicted by the 
RMS contrast of the difference image. In this range, 
the contrast in the filtered difference image is constant. 
(2) The RMS contrast for luminance modulations is 
consistently higher than for the red-green modulations. 
Since the difference images are chosen to be one jnd 
apart from the reference image, the RMS contrast 
should be identical for the red-green and the luminance 
modulations. Our calculations show that, difference 
images with identical RMS contrast, will lead to lower 
blur discrimination thresholds when modulated along 
red-green than along a luminance direction. (3) The 
single-channel model does not predict blur tolerance 
for yellow-blue modulations (open squares) for 
reference blurs larger than 0.5 arc min. The RMS 
contrast for yellow-blue is in arbitrary units. With 
increasing reference blur, the contrast in the difference 
image is used to a lesser degree than predicted by the 
contrast sensitivity function.  

 

FIG.5. RMS contrast available at blur discrimination 
threshold. 

 

In summary, a single-channel model based on the 
contrast sensitivity of the visual system does not 
predict blur discrimination thresholds for chromatic or 
luminance gratings.  A possible explanation for this 
mismatch is that blur thresholds are determined by the 

output of one or a few selected filters or that 
interactions between different spatial filters are 
important in this task. A similar conclusion was 

reached by Watt and his colleagues4,5,7. The filters 
most likely involved in our blur discrimination task are 
centered at 10 cpd for red-green and luminance, and at 
5 cpd for yellow-blue waveforms. 
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