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Abstract

The representation of spectral reflectance data by linear systems has been extensively studied
[1-3] and it has been shown that colour information can be accurately represented by
relatively few, although certainly more than three, parameters. In contrast Usui, Nakauchi and
Nakano [4] have suggested that a non-linear system such as an auto-associative neural
network can allow surface spectral reflectance data to be encoded by, and subsequently
recovered from, just three parameters. We have repeated the analysis by Usui et al. using a set
of 1269 Munsell reflectance spectra and have considered the representation of colour signals
resulting from the spectral energy distributions of the Munsell surfaces viewed under D65
illumination. A five-layer wine-glass-shaped auto-associative neural network was used to
encode and subsequently decode both reflectance spectra and colour signals. The middle layer
of the neural network contained between 2 and 6 units so that the network was constrained
to find efficient representations. Colour difference errors of reconstruction reduced with
increasing number of hidden units as expected on the basis of theoretical considerations.
Errors were smaller for networks trained with reflectance data rather than with colour signals
derived from D65 illumination. Colour signals for surfaces viewed under D65 illumination
are less constrained than the spectral reflectances of surfaces themselves. Spectral properties
of light sources must be taken into account in computations of sampling rates required for
recovery of colour signals and the subsequent recovery of surface reflectance spectra. 

1. Introduction

In order to gain a deeper understanding of colour representation within the human visual
system there have been several analyses of the reflectance spectra of Munsell colour chips. 
Munsell chips were selected and arranged on the basis of visual appearance criteria and thus
their surface spectral reflectances may in some way reflect the colour representation of the
human visual system. It is not at all clear however, that conclusions drawn from analyses
carried out using the Munsell reflectance data can be extended to other types of surface [5].
Cohen (1964) first analysed the surface spectral reflectances of 433 randomly selected
Munsell colour chips and conducted a principal component analysis by the Karhunen-Loeve
(KL) expansion [6]. Cohen concluded that surface reflectance spectra can be described by a
linear model using three or four parameters and discussed the results in terms of trichromatic
colour vision.  Maloney extended Cohen’s analysis to 462 Munsell colour chips and
concluded that the linear KL model fit the data when five to seven parameters are used [2].
Other workers have suggested that seven or eight linear parameters are required based on an
analysis of 1257 Munsell chips [7-8].

One of the aims inherent in these studies was to find the most efficient basis set to represent
sets of spectral reflectance data. If the results are compared with the physiological data there
are similarities [e.g. 9] with the spectral properties of opponent channels. It has been
suggested that the opponent coding of colours in the human visual system represents an
efficient coding strategy [10]. The accuracy of the linear models is primarily dependent on the
number of parameters allowed for the representation. Such analyses can therefore provide
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important information about the potential for recovery of original signals from sensor devices
(either biological or man-made) that capture signals using a small number of channels.

In contrast, some workers have considered the efficiency of representation of non-linear
systems. For example, Usui et al. (1992) used an auto-associative five-layer neural network
trained with a standard back-propagation learning algorithm to generate an identity mapping
of surface-spectral reflectance data for 1280 Munsell colour chips [4]. The network could be
considered to consist of encoding and decoding sub-networks. Once the identity map was
established the response pattern of the middle layer was determined in relation to various
Munsell colour chip inputs. It was concluded that three hidden units in the middle layer
provided an optimum colour representation in the sense that higher order representations 
were less efficient. In addition, in the case of the three-dimensional representation, each of the
three hidden units had some correspondence with a physiological colour channel; that is,
luminance, red-green or blue-yellow.

Our study is concerned with the representation of natural and man-made reflectance spectra
by linear and non-linear systems. Here we present some replication of the work of Usui’s
team and an extension of that work to the representation by autoassociative networks of
colour signals from Munsell colour chips viewed under natural illumination. 

2. Methods

A set of reflectance data were obtained which had been measured at 10nm intervals between
400nm and 700nm for 1269 Munsell surfaces [8,11]. A five-layer wine-glass-shaped
auto-associative neural network (Fig. 1) was used to encode and subsequently decode the
reflectance spectra of a randomly selected training set of 772 samples. 

The yellow rectangles represent layers of processing units. The green arrows represent full
forward connectivity between the layers. The direction of processing is from left to right. The
leftmost (input) contains 31 units; each unit receives information at a wavelength between
400 and 700nm. The rightmost (output) layer similarly contains 31 units.

Figure 1: Schematic diagram showing the neural network structure.
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The units in each layer received weighted input from each unit in the previous layer. Each
unit (apart from those in the input layer) also received weighted input from a bias unit with
fixed activation of 1; this is a standard feature of multi-layer perceptron networks. During
training of the network the reflectance spectrum of each sample in the set was presented in
turn to the input layer of the network. The activations of the units in the output layer were
computed and compared with the reflectance spectrum that was presented at the input.
Standard back-propagation algorithms [12] were used (implemented in MatLab) to find a set
of weights that minimized the output errors for all samples in the training set. The network
was forced to find an efficient representation of the colour data since the middle layer
contained only 2-6 units but the reflectance spectrum was regenerated at the output layer. The
selection of 10 hidden units in the 2nd and 4th layers of the network (Fig. 1) was arbitrarily
chosen to be greater than 6 and less than 31. Networks were considered trained when the root
mean squared (RMS) error between outputs and reflectance spectra, on a separately selected
test set of 243 samples, was less than the RMS error for a linear coding of the data using six
parameters. 

Subsequently, networks were also trained to represent colour signals for the training set under
D65. Colour signals were produced by multiplying normalised illuminants with the surface
reflectance spectra.  The normalised illuminant was given by dividing the original illuminant
by the mean energy of the illuminant. We present results only for illuminant D65.

The performance of the trained networks was tested on the training set and on a separate
validation set of 253 samples. The importance of the validation set is that it is not used, even
for testing, at any stage during the development of the neural network training and therefore
represents a statistically independent estimate of trained network performance. Performance
was assessed in all cases by the mean CIELAB colour difference �E between actual and
reconstructed spectra. 
 
Reflectance spectra were also analysed by computing the principal components or basis
functions of linear representations.

3. Results

Figure 2 shows reconstruction spectra for varying numbers (3-6) of hidden units for a typical
reflectance spectrum. Figure 3 shows a similar reconstruction using varying numbers (1-10)
of linear basis functions.

Networks with only 2 units in the middle layer could not be trained to achieve the desired
RMS error. Table 1 therefore shows data obtained with 3, 4, 5, and 6 units in the middle layer.
As expected, the CIELAB colour difference between the actual data and the data
reconstructed from the efficient representations reduced as the number of hidden units
increased. Colour differences were slightly higher when colour signals, rather than reflectance
spectra, were encoded. Theoretical considerations support this finding since it has been
postulated that the bandlimit of colour signals should be equal to the sum of the bandlimits of
the respective surfaces and illuminant [2]. 

Table 2 shows data obtained by the principal-component analysis.  As expected, the CIELAB
colour differences between the actual spectra and the reconstructed spectra from the efficient
representations reduced as the number of components used in the reconstruction increased.
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Mean CIELAB �E
Hidden Units Train set Test set Validation set All data

3 8.28 8.92 8.44 8.44
4 4.28 4.49 4.44 4.35
5 5.27 6.04 5.76 5.51
6 3.7 3.93 3.71 3.75

(a) reflectance data

Mean CIELAB �E
Hidden Units Train set Test set Validation set All data

3 9.53 9.86 9.37 9.56
4 10.78 11.18 10.91 10.89
5 4.35 5.2 4.57 4.56
6 5.13 5.5 5.04 5.18

(b) colour signals

Table 1:  Mean CIELAB colour differences for networks trained with (a) reflectance data and
(b) colour signals.

 
Figure 2: Reconstruction of a typical Munsell spectrum using an auto-associative neural

network
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Mean CIELAB �E
PCA

component
Test set Validation set Training set Test set data 

1 23.23 23.79 22.79 23.08

2 17.47 16.73 16.15 16.52

3 3.50 3.02 2.90 3.04
4 2.56 2.40 2.32 2.38
5 1.30 1.30 1.30 1.30
6 0.31 0.29 0.28 0.29
7 0.27 0.25 0.25 0.25

8 0.20 0.19 0.18 0.19

9 0.16 0.17 0.15 0.16
10 0.11 0.11 0.10 0.10

Table 2:  Mean CIELAB colour differences using n principal components in reconstruction of
reflectance spectra.

Figure 2: Reconstruction of a typical Munsell spectrum using a linear system.

Interestingly, if a linear system is used six components are required to produce colour
differences acceptable for many industrial applications (�E<1.0). Paradoxically, six
parameters in the non-linear neural network allowed recovery to an accuracy on average of
about 3.5 CIELAB �E units. It is, perhaps, surprising that the linear system outperforms the
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non-linear system given the same number of degrees of freedom. One possible explanation
for this is that the MSE error term that is minimised by both techniques is not appropriate if
the goal is to minimise perceptual colour differences. Unlike colour differences, the MSE
term does not take into account the spectral sensitivity of the human visual system. 

Figure 3: Activation map for one of the middle units in a neural network trained possessing
three middle units and trained with colour signals.

There is some evidence that the neural network that was trained with three units in the hidden
layer was able to learn that an opponent representation of the reflectance spectra and colour
signals is most efficient. For example, Fig. 3 shows an activation map for one of the units in
the middle layer of a network that had three units in the middle layer and that was trained
using colour signals of Munsell chips under D65. The activation map was obtained by
presenting colour signals to the input of the trained network and noting the activation of the
middle units. Fig. 3 shows how these activations varied with the CIELAB a* b* coordinates
of the colour signals. The particular unit illustrated demonstrates tuning in the a* direction.
Other units were found that were mainly sensitive to luminance or to b*. 
 
4. Conclusions

We have trained auto-associative neural networks to find efficient representations of colour
information for reflectance data and colour signals. Representations were more efficient for
raw reflectance data than for colour signals under D65. Colour signals for surfaces viewed
under D65 illumination are less constrained than the spectral reflectances of surfaces
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themselves. The spectral properties of light sources must be taken into account in
computations of sampling rates required for recovery of colour signals and subsequently
reflectance spectra. 

A neural representation using three units in the middle layer exhibits recovery errors
equivalent to an average colour difference �E of over 9.0 CIELAB units.  The representations
become more efficient as the number of units in the middle layer is increased but even the
network with six units in the middle layer produces average colour differences of 3.7
CIELAB units. 

The fact that efficient representations cannot be found with only two hidden units is
consistent with the findings of Usui et al. [4].  Furthermore the activation patterns for the
network with three hidden units, in particular, share some properties with the opponent
channels in the human visual system and with the principal-component or subspace
representations of reflectance spectra reported by several workers [9,11]. Thus, opponent
representations are highly efficient representations of colour information [10]. We find no
evidence, however, that reflectance spectra, nor indeed colour signals, are inherently three-
dimensional despite the fact that three-dimensional systems can represent a surprisingly large
proportion of the variance in the data [4]. 

We were surprised that the reconstruction errors for the non-linear systems were greater than
for the linear systems given the same number of degrees of freedom. This result could
indicate that the neural network systems were not trained sufficiently. However, the neural
network representations were trained to achieve a mean squared error equivalent to that of six
linear components. Therefore the larger CIELAB colour differences shown for the neural
network representation may simply indicate that MSE is not an appropriate measure to
minimise since it does not take into account the spectral sensitivity of the human visual
system.

Further work is underway to investigate the effect of other natural illuminants and of artificial
light sources on the statistics of surface colour signals. These statistics will be characterised
using linear and non-linear models and have important implications for the validity of
computational models of colour vision (e.g. colour constancy [13] and transparency [14]) and
sampling errors for machine-vision systems.
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