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Abstract 
It is known that the reflectance spectra of both natural and 

man-made surfaces may be represented efficiently using linear 
models. A key question, however, is how many basis functions of a 
linear model are necessary for a given accuracy of representation. 
The question is ill-posed, however, since it is understood that the 
number of basis functions required depends to a great extent on 
the intended application of the linear model. However, in one 
study it was shown that more than six basis functions were 
required to ensure that the largest colour difference in the set of 
spectra was less than 1.0 CIELAB unit and therefore it is 
reasonable to assume that, for many applications where relatively 
large patches of spatially uniform colour are present, six of basis 
functions will be required since CIELAB colour differences of 
unity or more in such circumstances are known to be noticeable. 
However, the magnitude of colour difference that would be visible 
in a complex or natural image is not so well established. A recent 
psychophysical study demonstrated that although five basis 
functions produced on average unit error in CIELAB space, 
original natural images were psychophysically indistinguishable 
from their linear-model approximations only if there were at least 
8 basis functions. The aim of this study is to psychophysically 
investigate the effect of spatial structure on the number of basis 
functions required to colorimetrically reproduce spectral images. 

Introduction  
It is known that the reflectance spectra of both natural and 

man-made surfaces may be represented efficiently using linear 
models. A key question, however, is how many basis functions of 
a linear model are necessary for a given accuracy of 
representation. Many studies1-3 have been carried out to estimate 
the minimum number of basis functions for spectral reproduction. 
The question is ill-posed, however, since it is understood that the 
number of basis functions required depends to a great extent on the 
intended application of the linear model4. However, in one study it 
was shown that more than six basis functions were required to 
ensure that the largest colour difference in the set of spectra was 
less than 1.0 CIELAB unit5 and therefore it is reasonable to 
assume that, for many applications where relatively large patches 
of spatially uniform colour are present, six of basis functions will 
be required since CIELAB colour differences of unity or more in 
such circumstances are known to be noticeable. However, the 
magnitude of colour difference that would be visible in a complex 
or natural image is not so well established6. A recent 
psychophysical study7 demonstrated that although five basis 
functions produced on average unit error in CIELAB space, 
original natural images were psychophysically indistinguishable 
from their linear-model approximations only if there were at least 
8 basis functions. The aim of this study is to psychophysically 
investigate the effect of spatial structure on the number of basis 
functions required to colorimetrically reproduce spectral images. 

Experimental 
A set of 24 reflectance spectra were chosen from the set of 

1269 Munsell reflectance spectra8 using a colour-selection 
technique9 that aimed to ensure that the selected samples were 
evenly distributed in the (approximately) visually uniform 
CIELAB colour space. Figure 1 shows the chromaticities of the 24 
reflectance spectra when viewed by the CIE 1964 standard 
observer under D65 illumination in CIE xy coordinates. A linear 
model consisting of basis functions was derived from the full 1269 
Munsell data set and subsequently used to represent the 24 
reflectance spectra using n basis functions where n∈{1,2,...,9}. 
Mondrian-like images were created using n basis functions to 
represent the spectra of the patches. CIE tristimulus values were 
computed (illuminant D65 and 1964 standard observer data) for 
each spectral representation in the linear model and a monitor 
characterization model was used to transform the XYZ values to 
monitor RGB values9 for display purposes. 

 

Figure 1: Chromaticity in CIE xy coordinate for 24 reflectance spectra (red 
triangles) used to create the first set of Mondrians and 384 reflectance 
spectra (green dots) used to create the second Mondrians. 

The 24 reflectance spectra were randomly divided into 4 
groups of 6. Each group was then used to define the reflectance 
characteristics of patches in Mondrian images (384 × 256 pixels). 
In the simplest case the Mondrian images were composed of 6 
patches each of size 128 × 128 pixels; in the most complex case 
there were 95744 patches each of size 1 × 1 pixels (see Figure 2). 
Irrespective of the number of patches (6, 24, 96, 384, 1536, 6144, 
24576 or 95744) only 6 reflectance spectra were used in the 
definition of the patches of any Mondrian (see Figure 2b). This 
created a series of Mondrian images where the spatial complexity 
of the image varied but the spectral properties were kept constant. 



 

 

Figure 2: Illustration of the first set of Mondrian images (a) constituted from 
24 reflectance spectra (b) with varying patch size in units of pixel, and (c) the 
produced images by linear modeling of 1 to 9 basis functions for each class 
of spatial complexity Mondrian image. 

Figure 3: Illustration of the second set of Mondrian images constituted from 
384 reflectance spectra with (a) varying patch size in units of pixel, and (b) 
the produced images by linear modeling of 1 to 9 basis functions for each 
class of spatial complexity Mondrian image. 

A second set of Mondrian images was created based on a sub-
set of 384 reflectance spectra. The chromaticities of the 384 
reflectance spectra are illustrated in Figure 1. Rather than using 
only 6 reflectance spectra as in the first set of Mondrian images, 
each image in the second set of Mondrians contains 384 spectrally 
unique patches. The series of Mondrian images was generated in a 
similar way as the first set of Mondrian images; however, in order 
to include all 384 colours in all images of the second series, the 
largest patch size was 16 × 16 pixels (resulting in 384, 1536, 6144, 
24576 or 95744 patches). A typical sequence is illustrated in 
Figure 3. As in the first series this created a set of Mondrian 
images where the spatial complexity of the image varied but the 
spectral properties were kept constant. However, in the second 

series the variety of colours (both spectrally and colorimetrically) 
is much larger than in the first set. 

The configuration of the psychophysical experiment was such 
that in each trial three images were displayed in a horizontal row 
on a computer monitor. The centre image always consisted of 
original reflectance spectra; the left-hand and right-hand images 
were randomly selected so that one was identical to the centre 
image and the other consisted of linear-model reconstructions of 
the spectra in the centre image. For the reconstructed spectra the 
number of basis functions n was varied but remained the same in 
any one image or trial. Observers were informed that the central 
image was the original and were forced to choose whether the left-
hand or right-hand image was an identical match to the original. 
The experiment was therefore a two-alternate forced-choice 
(2AFC) paradigm. It was assumed that when the reconstructed 
image was very different to the original then the observer would 
correctly select the original image with high probability. 
Conversely, when the quality of the reconstruction was high it 
would be difficult for the observer to identify the original and 
discrimination performance would tend towards 50% correct 
responses. Note, therefore, that poor visual performance in the 
visual discrimination task will correspond to an effective linear 
model. 

Five observers (QC, VC, WL, CF, SC), with normal colour 
vision and normal or corrected-to-normal visual acuity, were 
recruited to take part in the psychophysical experiment. All five 
observers participated in the experiment using the second set of 
Mondrian images. The viewing distance of this experiment was 
fixed at 160cm so that the series of images generated patch sizes in 
the range 2.4 to 38.4 cyc/deg. Each observer undertook at least 24 
repeats for the 5 (spatial complexity) × 9 (linear model n) 
conditions leading to 5400 trials. 

Three of the observers (QC, VC, WL) participated in the 
experiment using the first set of Mondrian images. Two of the 
observers (QC and VC) viewed the stimuli at 160cm so that the 
series of images generated patch sizes in the range 0.30 to 38.4 
cyc/deg. Each observer undertook 16 repeats for the 8 (spatial 
complexity) × 9 (linear model n) × 4 (selections of 6 spectra) 
conditions leading to a total of 4608 trials. All three observers also 
repeated the experiment at half the viewing distance (80 cm). Each 
observer undertook 15 repeats for the 8 (spatial complexity) × 9 
(linear model n) × 4 (selections of 6 spectra) conditions leading to 
a total of 12960 trials.  

Results and discussion 
 
In order to quantify the reproduced reflectance 

colorimetrically, CIELAB colour differences were calculated 
between each original reflectance spectra and its representation in 
the linear model with n ∈ {1,2,...,9}. Table 1 shows the average 
colour difference between the original images and their linear-
model representations for different values of n. The data in Table 1 
are consistent with data reported in similar studies1,2,5. 

Psychophysical data were fitted by psychometric functions 
fitted using psignifit (vers. 2.5.6), a software package which 
implements the maximum-likelihood method11. Figure 4 shows an 
example of one observer’s results for a set of stimuli of a particular 
spatial complexity. For each psychometric function the threshold 
of discrimination performance was set to 75% correct responses.  
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Table 1: Average and maximum CIELAB colour differences 
between original and approximated images generated using 
different numbers of basis functions. 

24 reflectances 384 reflectances number of 
basis 

functions 
average max average max 

1 37.49 70.74 32.11 71.93 
2 30.48 109.47 22.83 109.47 
3 6.14 19.92 3.79 28.65 
4 3.71 12.44 2.34 19.16 
5 1.48 6.04 1.08 6.04 
6 1.39 4.22 1.00 5.31 
7 0.40 1.61 0.31 1.78 
8 0.38 1.38 0.25 1.94 
9 0.27 0.77 0.19 1.18 
 

 
Figure 4: Observer’s percent-correct result for one sequence with a 
particular spatial structure. The data is fitted by logistic regression. The 
threshold is chosen corresponding to 75% correct. 

Figures 5 and 6 show the results of the first and second 
experiment respectively. For the experiment with only six distinct 
colours, the thresholds (in terms of number of basis functions n 
corresponding to 75% correct) were pooled over the four sets of 6 
spectra and shown separately for each observer. In Figure 5 the 
thresholds are plotted against spatial frequency. We note that in 
each stimulus many spatial frequencies are present. However, for 
each stimulus the first harmonic frequency has been calculated and 
is used to represent the scale properties of the stimulus. As the size 
of the patches was reduced (left-to-right in the middle row of 
Figure 2) the spatial frequency of the first harmonic increased. 
Recall again that when the threshold number of basis functions is 
small, this implies that observers’ ability to discriminate between 
originals and reproductions for that condition is poor and that the 
linear model is effective. Figure 5 indicates that there is an effect 
of spatial frequency (or image complexity) on the number of basis 
functions required that is large compared with the standard error 
bars. It might be thought that when the patch size is small 
(corresponding to high spatial frequencies in Figure 5) observers 
would be unable to discriminate between original and linear-model 

reproductions even when the number of basis functions used in the 
linear model is small. However, the opposite trend is observed.  

 
 
 
 
 
 

Figure 5: Discrimination thresholds for three observers. Threshold is plotted 

as number of basis functions against spatial frequency for all 4 image 

groups (±1 standard error is shown) under 2 viewing distances (squares: 

80cm; triangles: 160cm). 
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That is, as the patch size is reduced (in terms of degrees of 
visual angle) observers become better able to discriminate and this 
is best illustrated by the right-most points in Figure 5.  

The right-most square symbol and right-most triangle symbol 
in each plot corresponds to the same stimulus but viewed from a 
different distance. Generally, the results show a u-shape; indicating 
that visual discrimination for this task is poorest for spatial 
frequencies in the region 10 cyc/deg. This was an unexpected 
result because in some other visual tasks (such as detection of 
luminance contrast) performance peaks around 10 cyc/deg. One 
possible explanation is that the number of distinct colours in each 
patch is too small. Performance when the patch size is tiny (see 
right-most image in Figure 2b – where the image is tending 
towards a spatially uniform patch) might be similar to when the 
patch size is very large (see left-most image in Figure 2b) when 
the number of distinct colours is small. It is for this reason that 
related experiments were conducted using 384 distinct colours 
rather than 24 colours. 

Figure 6 illustrates the results of the experiment using images 
with 384 distinct colours. The thresholds (in terms of number of 
basis functions n) were pooled over the Mondrian-images set and 
are shown separately in Figure 6 for each of 5 observers. Although 
the absolute individual thresholds vary between observers, there is 
still evidence of the u-shaped plot.  

For many applications concerning spatially uniform colours it 
is considered appropriate to use linear models with only six basis 
functions5. One might imagine that for images of natural scenes 
the tolerance for discrimination between original images and those 
represented by basis functions would be greater. There is an 
analogy with colour difference: The threshold colour difference 
between two spatially uniform patches is often considered to be 
somewhat less than 1 CIELAB unit but for images the threshold 
colour difference is 3-5 CIELAB units12. However, in the case of 
linear-model representations Nascimento et al. reported that for 
natural scenes observers could make discriminations between 
originals and linear-model representations even when 7 or 8 basis 
functions were used7. Based on their work Nascimento et al. 
suggested that the number of basis functions needed to represent 
images might need to be revised upwards. This study supports 
Nascimento et al.’s finding in that discrimination performance in 
our task is surprisingly poor even when relatively large numbers of 
basis functions are used.    

In this study a criterion of 75% correct was used to determine 
the thresholds and the number of basis functions corresponding to 
this threshold performance was 3-6 depending upon image 
complexity. Our data show, however, that as the image complexity 
increases the number of required basis functions also increases. 
The disparity between our 3-6 basis functions and Nascimento et 
al.’s 7-8 basis functions may be attributed to the definition of the 
threshold. Nascimento et al. used two criterion levels of 
performance of 75% and 55% correct and argued that the 55% 
level was a compromise between the stability of the threshold 
estimate and the closeness of the criterion to the true chance level 
of 50%. If in this study a threshold criterion of 55% had been used 
instead of 75% then it is likely that the number of basis functions 
required at threshold would have been greater than 3-6. Indeed, in 
the Nascimento et al. study the number of basis functions 
corresponding to 75% correct (the same criterion threshold as in 
our study) was 5-6. An alternative approach to the threshold 

criterion was carried out in Oxtoby and Foster’s study13 where a d-
prime analysis suggested that at least 5 basis functions are required 
for discrimination performance at threshold (in this case defined 
by d´ = 0) with Mondrian-like images. The Oxtoby and Foster 
work set a lower limit of 5 basis functions for discrimination 
performance. However, the novel feature of our work is to vary the 
image complexity (as defined by spatial frequency of the first 
harmonic in our graphs).  We show that the number of basis 
functions required for a specified performance varies with the 
spatial properties of the image.         
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Figure 6: Discrimination thresholds for five observers. Threshold is plotted 

as number of basis functions against spatial frequency (top) and patch size 

(bottom) under viewing distance of 160cm. 
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